miércoles, 23 de abril de 2008

CoEnZimA

Son cofactores orgánicos no proteicos, termoestables, que unidos a una apoenzima constituyen la holoenzima o forma catalíticamente activa de la enzima. Tienen en general baja masa molecular y son claves en el mecanismo de catálisis.

A diferencia de las enzimas, los coenzimas se modifican y consumen durante la reacción química; por ejemplo, el NAD+ se reduce a NADH cuando acepta dos electrones y por tanto se agota; cuando el NADH libera sus electrones se recupera el NAD+, que de nuevo puede actuar como coenzima.

aPoEnZimA

Parte proteica de una enzima, desprovista de las coenzimas que puedan ser necesarios para que la enzima sea funcionalmente activa. La apoenzima es catalíticamente inactiva; cuando se le une la coenzima o cofactor adecuados, constituye la holoenzima.

EnZimA

Sustancias de naturaleza proteica que catalizan reacciones químicas, siempre que sea termodinámicamente posible. En estas reacciones, las moléculas sobre las que actúa la enzima en el comienzo del proceso son llamadas sustratos, y estas los convierten en diferentes moléculas, los productos. Casi todos los procesos en las células necesitan enzimas para que ocurran en tasas significativas. A las reacciones mediadas por enzimas se las denomina reacciones enzimáticas.

jueves, 10 de abril de 2008

Saponificación.


La saponificación es una reacción química entre un ácido graso (o un lípido saponificable, portador de residuos de ácidos grasos) y una base o álcali, en la que se obtiene como principal producto la sal de dicho ácido y la base. Estos compuestos tienen la particularidad de ser anfipáticos, es decir tienen una parte polar y otra apolar (o no polar), con lo cual pueden interactuar con sustancias de propìedades dispares. Por ejemplo, los jabones son sales de ácidos grasos y metales alcalinos que se obtienen mediante saponificación.
El método de saponificación industrial consiste en hervir la grasa en grandes calderas, añadiendo lentamente sosa cáustica (NaOH), agitandose continuamente la mezcla hasta que comienza esta a ponerse pastosa.
La reacción que tiene lugar es la saponificación y los productos son el jabón y la lejía residual que contiene glicerina:
Grasa + sosa = jabón + glicerina + lejía (agua y sosa)
Un lípido saponificable sería todo aquel que esté compuesto por un alcohol unido a uno o varios ácidos grasos (iguales o distintos). Esta unión se realiza mediante un enlace éster, muy difícil de hidrolizar. Pero puede romperse fácilmente si el lípido se encuentra en un medio básico. En este caso se produce la saponificación alcalina. En los casos en los que para la obtención del jabón se utiliza un glicérido o grasa neutra, se obtiene como subproducto el alcohol llamado glicerina, que puede dar mayor beneficio económico que el producto principal.
En el ejemplo de arriba una molécula de un lípido es tratada con dos de hidróxido de potasio; se obtienen dos moléculas de palmitato de potasio (un jabón) y una de glicerina.
La acción limpiadora del jabón se debe a su poder emulsionante, esto es, su habilidad para suspender en agua sustancias que normalmente no se disuelven en agua pura. La cadena hidrocarbonada (parte hidrofóbica) de la sal (el jabón), tiene afinidad por sustancias no polares, tales como las grasas de los alimentos. El grupo carboxilato (parte hidrofílica) de la molécula tiene afinidad por el agua.
En la solución de jabón, los iones carboxilato rodean a las gotas de grasa: sus partes no polares se ubican (disuelven) hacia adentro, mientras que los grupos carboxilatos se ordenan sobre la superficie externa. Así, reducidas a volúmenes muy pequeños, las gotas pueden asociarse con las moléculas de agua y se facilita la dispersión de la grasa. Estas pequeñas gotas que contienen las partículas no polares rodeadas de anoiones carboxilato se denominan micelas. Es la presencia de estos aniones carboxilato la que hace que las superficies de las micelas estén cargadas negativamente y se repelan entre sí, impidiendo la coalescencia y manteniendo la emulsión, es decir la dispersión en gotas muy finas.

miércoles, 9 de abril de 2008

PrOtEiNaS.


Las proteínas son macromoléculas formadas por cadenas lineales de aminoácidos. El nombre proteína proviene de la palabra griega πρώτα ("prota"), que significa "lo primero" o del dios proteo, por la cantidad de formas que pueden tomar.

Las proteínas son moléculas de enorme tamaño; pertenecen a la categoría de macromoléculas; son polímeros, es decir, están constituidas por gran número de unidades estructurales simples repetitivas (monómeros). Debido a su gran tamaño, cuando estas moléculas se dispersan en un disolvente adecuado, forman siempre dispersiones coloidales, con características que las distinguen de las soluciones de moléculas más pequeñas.
Por hidrólisis, las moléculas proteínicas son escindidas en numerosos compuestos relativamente simples, de pequeño peso, que son las unidades fundamentales constituyentes de la macromolécula. Estas unidades son los aminoácidos, de los cuales existen veinte especies diferentes y que se unen entre sí mediante enlaces peptídicos. Cientos y miles de estos aminoácidos pueden participar en la formación de la gran molécula polimérica de una proteína.
Todas las proteínas contienen carbono, hidrógeno, oxígeno y nitrógeno y casi todas poseen también azufre. Si bien hay ligeras variaciones en diferentes proteínas, el contenido de nitrógeno representa, término medio, 16% de la masa total de la molécula; es decir, cada 6,25 g de proteínas contienen 1 g de N. El factor 6,25 se utiliza para estimar la cantidad de proteína existente en una muestra a partir de la medición de N de la misma.
La síntesis proteica es un proceso complejo cumplido por las células según las directrices de la información suministrada por los genes.


Las proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos (biomolécula). Prácticamente todos los procesos biológicos dependen de la presencia y/o actividad de este tipo de sustancias. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de funciones a ellas asignadas. Son proteínas casi todas las enzimas, catalizadores de reacciones químicas en organismos vivientes; muchas hormonas, reguladores de actividades celulares; la hemoglobina y otras moléculas con funciones de transporte en la sangre; los anticuerpos, encargados de acciones de defensa natural contra infecciones o agentes extraños; los receptores de las células, a los cuales se fijan moléculas capaces de desencadenar una respuesta determinada; la actina y la miosina, responsables finales del acortamiento del músculo durante la contracción; el colágeno, integrante de fibras altamente resistentes en tejidos de sostén.

sábado, 5 de abril de 2008

CoLeStErOL.



El colesterol es un lípido que se encuentra en los tejidos corporales y en el plasma sanguíneo de los vertebrados. Se presenta en altas concentraciones en el hígado, médula espinal, páncreas y cerebro. El nombre de «colesterol» procede del griego kole (bilis) y stereos (sólido), por haberse identificado por primera vez en los cálculos de la vesícula biliar por Michel Eugène Chevreul quien le dio el nombre de «colesterina».


Es un lípido esteroide, molécula de ciclopentanoperhidrofenantreno (o ester), constituida por cuatro carbociclos condensados o fundidos, denominados A, B, C y D, que presentan varias sustituciones:
Dos radicales metilo en las posiciones C-10 y C-13.
Una cadena no metálica en la posición C-17.
Un grupo hidroxilo en la posición C-3.
Una insaturación entre los carbonos C-5 y C-6.
En la molécula de colesterol se puede distinguir una cabeza polar constituida por el grupo hidroxilo y una cola o porción apolar formada por el carbociclo de núcleos condensados y los sustituyentes alifáticos. Así, el colesterol es una molécula tan hidrófoba que la solubilidad de colesterol libre en agua es de 10-8 M y, al igual que los otros lípidos, es bastante soluble en disolventes apolares como el cloroformo (CCl4).

Fuentes de colesterol [editar]
Los organismos mamíferos obtienen colesterol a través de dos vías:
1. Vía exógena o absorción de colesterol pre-existente en los alimentos. El colesterol se encuentra exclusivamente en los alimentos de origen animal, mayoritariamente la yema de huevo, hígado, lácteos, cerebro (sesos) y músculo esquelético (carnes rojas).
2. Vía endógena o síntesis de novo, es la síntesis de colesterol en las células animales a partir de su precursor, el acetato, en su forma activada acetil-coenzima A

Síntesis de colesterol.

La biosíntesis del colesterol tiene lugar en el retículo endoplásmico (liso) de virtualmente todas las células de los animales vertebrados. Mediante estudios de marcaje isotópico, D. Rittenberg y K. Bloch demostraron que todos los átomos de carbono del colesterol proceden, en última instancia, del acetato, en forma de acetil-Coenzima A. Se requirieron aproximadamente otros 30 años de investigación para describir las líneas generales de la biosíntesis del colesterol, desconociéndose, sin embargo, muchos detalles enzimáticos y mecanísticos a la fecha. Los pasos principales de la síntesis de colesterol son:
El acetil-CoA se convierte en mevalonato.
El mevalonato se convierte en escualeno mediante reacciones sucesivas de transferencia de grupos prenilo.
El escualeno se transforma en lanosterol.
El lanosterol se convierte en colesterol después de otras 21 reacciones sucesivas, enzimáticamente catalizadas.

Transporte del colesterol

Debido a su gran insolubilidad en agua el colesterol circula en la sangre exclusivamente asociado a complejos macromoleculares conocidos como lipoproteínas.

jueves, 3 de abril de 2008

cArBoHiDrAtOs




Los glúcidos, mal denominados hidratos de carbono o carbohidratos, son una clase básica de compuestos químicos en bioquímica. Son la forma biológica primaria de almacenamiento o consumo de energía; otras formas son las grasas y las proteínas.
El término hidrato de carbono o carbohidrato es poco apropiado, ya que estas moléculas no son átomos de carbono hidratados, es decir, enlazados a moléculas de agua, sino de átomos de carbono unidos a otros grupos funcionales químicos. Este nombre proviene de la nomenclatura química del siglo XIX, ya que las primeras sustancias aisladas respondían a la fórmula elemental Cn(H2O)n (donde "n" es un entero=1,2,3... según el número de átomos). De aquí el término "carbono-hidratado" se haya mantenido, si bien posteriormente se vio que otras moléculas con las mismas características químicas no se corresponden con esta fórmula.

domingo, 30 de marzo de 2008

LiPiDoS


Los lípidos son un conjunto de moléculas orgánicas, la mayoría biomoléculas, compuestas principalmente por carbono e hidrógeno y en menor medida oxígeno, aunque también pueden contener fósforo, azufre y nitrógeno, que tienen como característica principal el ser hidrofóbicas o insolubles en agua y sí en disolventes orgánicos como la bencina, el alcohol, el benceno y el cloroformo. En el uso coloquial, a los lípidos se les llama incorrectamente grasas, aunque las grasas son sólo un tipo de lípidos procedentes de animales. Los lípidos cumplen funciones diversas en los organismos vivientes, entre ellas la de reserva energética (triglicéridos), la estructural (fosfolípidos de las bicapas) y la reguladora (esteroides).

viernes, 28 de marzo de 2008

Regulación Ácido-Base.

La conservación del líquido extracelular dentro de un pH entre 7.35 y 7.45, en donde el sistema amortiguador de bicarbonato, tiene una función importante, es esencial para la salud. Las alteraciones del equilibrio acido básico se diagnostican mediante una prueba de laboratorio clínico, por medición del pH de la sangre arterial y el contenido de CO2 de la sangre venosa.
Las causas de la acidosis (pH sanguíneo <7.35)>7.45) comprenden el vomito de acido gástrico o el tratamiento con ciertos diuréticos.

sábado, 15 de marzo de 2008

pH


El pH es la concentración de hidrógenos presentes en determinada sustancia. El término significa "potencial de Hidrógeno" y fue acuñado por el químico danés Sørensen, quien lo definió como el logaritmo negativo de la actividad de los iones hidrógeno. Esto es:
Desde entonces, el término pH ha sido universalmente utilizado por la facilidad de su uso, evitando así el manejo de cifras largas y complejas. En disoluciones diluidas en lugar de utilizar la actividad del ion hidrógeno, se le puede aproximar utilizando la concentración molar del ion hidrógeno.Por ejemplo, una concentración de [H+] = 1 × 10–7 M (0,0000001) es simplemente un pH de 7 ya que : pH = –log[10–7] = 7
El pH típicamente va de 0 a 14 en disolución acuosa, siendo ácidas las disoluciones con pH menores a 7, y básicas las que tienen pH mayores a 7. El pH = 7 indica la neutralidad de la disolución (siendo el disolvente agua).Se considera que p es un operador logarítmico sobre la concentración de una solución: p = –log[...] , también se define el pOH, que mide la concentración de iones OH-.
Puesto que el agua está disociada en una pequeña extensión en iones OH– y H+, tenemos que:
Kw = [H+][OH–]=10–14
en donde [H+] es la concentración de iones de hidrógeno, [OH-] la de iones hidróxido, y Kw es una constante conocida como producto iónico del agua.
Por lo tanto,
log Kw = log [H+] + log [OH–]
–14 = log [H+] + log [OH–]
14 = –log [H+] – log [OH–]
pH + pOH = 14
Por lo que se puede relacionar directamente el valor del pH con el del pOH.
En disoluciones no acuosas, o fuera de condiciones normales de presión y temperatura, un pH de 7 puede no ser el neutro. El pH al cual la disolución es neutra estará relacionado con la constante de disociación del disolvente en el que se trabaje.

lunes, 10 de marzo de 2008

AGUA




El agua es un compuesto formado por dos átomos de hidrógeno (H) y uno de oxígeno (O). Su fórmula molecular es H2O.
El agua cubre el 72% de la superficie del planeta
Tierra y representa entre el 50% y el 90% de la masa de los seres vivos (aproximadamente el 75% del cuerpo humano es agua, en el caso de las algas el porcentaje ronda el 90%). Es una sustancia relativamente abundante aunque sólo supone el 0,022% de la masa de la Tierra. Se puede encontrar esta sustancia en prácticamente cualquier lugar de la biosfera y en los tres estados de agregación de la materia: sólido, líquido y gaseoso.
Se halla en forma líquida en los
mares, ríos, lagos y océanos; en forma sólida, nieve o hielo, en los casquetes polares, en las cumbres de las montañas y en los lugares de la Tierra donde la temperatura es inferior a cero grados Celsius; y en forma gaseosa se halla formando parte de la atmósfera terrestre como vapor de agua.




Es fundamental para todas las formas de vida conocida. Los humanos consumen agua potable. Los recursos naturales seEl agua pura no tiene olor, sabor, ni color (es decir, es incolora, insípida e inodora). Para obtener agua químicamente pura es necesario realizar diversos procesos físicos de purificación ya que el agua es capaz de disolver una gran cantidad de sustancias químicas, incluyendo gases.
Se llama
agua destilada al agua que ha sido evaporada y posteriormente condensada. Al realizar este proceso se eliminan casi la totalidad de sustancias disueltas y microorganismos que suele contener el agua; es prácticamente la sustancia química pura H2O.
El
punto de ebullición del agua a la presión de una atmósfera, que suele ser la que hay al nivel del mar, es de 100 °C, y su punto de congelación es de 0 °C. La densidad máxima del agua líquida es 1 g/cm3, alcanzándose este valor a una temperatura de 3,8 °C; la densidad del agua sólida es menor que la del agua líquida a la misma temperatura, 0,917 g/ml.
El agua tiene una
tensión superficial muy elevada. El calor específico del agua es de 1 cal/°C·g.
El agua es considerada un
disolvente universal, ya que es el líquido que más sustancias disuelve, por ser una molécula polar. Las moléculas de agua están unidas por puentes de hidrógeno.
El agua que es una molécula polar porque presenta
polaridad eléctrica, con un exceso de carga negativa junto al oxígeno, compensada por otra positiva, repartida entre los dos átomos de hidrógeno; los dos enlaces entre hidrógeno y oxígeno no ocupan una posición simétrica, sino que forman un ángulo de 104° 45'. El agua es un termorregulador del clima, gracias a su elevada capacidad calorífica. Su elevada tensión superficial hace que se vea muy afectada por fenómenos de capilaridad.
Presenta un
punto de ebullición de 100 °C (373 K) a presión de 1 atm (se considera como estándar para la presión de una atmósfera la presión promedio existente al nivel del mar).
Tiene un
punto de fusión de 0 °C (273 K) a presión de 1 atm.
La temperatura crítica del agua(es decir aquella a partir de la cual no puede estar en estado líquido independientemente de la presión a la que esté sometida) es de 374ºC y se corresponde con una presión de 217,5 atmósferas.
El agua pura no conduce la
electricidad (agua pura es el agua destilada libre de sales y minerales)
Es un líquido casi
incoloro, inodoro e insípido. Estas son las propiedades organolépticas, es decir, las que se perciben con los órganos de los sentidos del ser humano.
Se presenta en la naturaleza de tres formas, que son:
sólido, líquido o gas.
Tiene una densidad máxima de 1 g/cm3 a 277 K y presión 1 atm. Así, por cada centímetro cúbico (cm3) hay 1 g de agua.
Forma dos diferentes tipos de
meniscos: cóncavo y convexo.
Tiene una
tensión superficial, cuando la superficie de los líquidos se comporta como una película capaz de alargarse y al mismo tiempo ofrecer cierta resistencia al intentar romperla; esta propiedad contribuye a que algunos objetos muy ligeros floten en la superficie del agua.
Posee
capilaridad, que es la propiedad de ascenso, o descenso, de un líquido dentro de un tubo capilar.
La
capacidad calorífica es mayor que la de otros líquidos.
Calor latente de
fusión del hielo a 0 °C: 80 cal/g (ó 335 J/g)
Calor latente de evaporación del agua a 100 °C: 540 cal/g (ó 2260 J/g)
Se
cristaliza esponjosa (nieve)
Tiene un estado de sobreenfriado, es decir, líquido a -25 °C
Ayuda a regular el calor de los animales
Tiene un elevado
calor de vaporización, y una elevada constante dieléctrica.
Proporciona
flexibilidad a los tejidos.
Tiene una gran fuerza de
cohesión entre sus moléculas, y la fuerza de adhesión por los puentes de hidrógeno que son muy termolábiles. han vuelto escasos con la creciente población mundial y su disposición en varias regiones habitadas es la preocupación de muchas organizaciones gubernamentales.
El agua cubre tres cuartas partes de la superficie de la Tierra, pese al área por la cual se extiende, la
hidrósfera terrestre es comparativamente bastante escasa, para dar un ejemplo citado por Jacques Cousteau: si se sumergiera una bola de billar en agua y se la quitase la película de humedad que quedaría inmediatamente tras ser sacada sería proporcionalmente mayor que la de todos los océanos. El 97 % es agua salada la cual se encuentra principalmente en los océanos y mares, sólo 3% de su volumen es dulce. De ese 3%, un 1% está en estado líquido, componiendo los ríos y lagos. El 2% restante se encuentra formando casquetes o banquisa en las latitudes próximas a los polos, fuera de las regiones polares el agua dulce se encuentra principalmente en humedales y, subterráneamente, en acuíferos. Hacia 1970 se consideraba ya que la mitad del agua dulce del planeta Tierra estaba contaminada.


jueves, 7 de febrero de 2008

Micelas

La formación de micelas es algo muy interesante, tanto en la teoria como en la practica; en la experimentación que llevamos a cabo para hacer visibles la formación de estas, es muy interesante, ya que la bioquimica a pesar de contener temas muy interesantes, no es tan llamatiba hasta que la practica, observacion y analisis se hacen presentes.

En la formación de una micela de jabón en agua, las moléculas de jabón se enlazan entre si por sus extremos hidrófobos que corresponden a las cadenas hidrocarbonadas, mientras que sus extremos hidrófilos, aquellos que llevan los grupos carboxilo, ionizados negativamente por pérdida de un ion sodio o potasio, se repelen entre si. De esta manera las cadenas no polares del jabón se ocultan al agua, mientras que los grupos carboxilo, cargados negativamente, se hallan expuestos a la misma.